QGOpt

Release 0.2a

Dec 07, 2022

Getting started:

Installation

Quick Start: Quantum Gate decomposition
API

Frequently asked questions

Entanglement renormalization

Quantum channel tomography

Quantum state tomography

Optimal POVM

How to Contribute

11

13

21

27

31

35

QGOpt, Release 0.2a

QGOpt is an extension of TensorFlow optimizers on Riemannian manifolds that often arise in quantum mechanics.
QGOpt allows to perform optimization on the following manifolds:

* Complex Stiefel manifold;

* Manifold of density matrices;

Manifold of Choi matrices;

Manifold of Hermitian matrices;
» Complex positive-definite cone;
* Manfiold of POVMs.
QGOpt includes Riemannian versions of popular first-order optimization algorithms that are used in deep learning.

One can use this library to perform quantum tomography of states and channels, to solve quantum control problems and
optimize quantum unitary circuits, to perform entanglement renormalization, to solve different model identification
problems, to optimize tensor networks with natural “quantum” constraints, etc.

Getting started: 1

QGOpt, Release 0.2a

2 Getting started:

CHAPTER 1

Installation

Make sure you have TensorFlow >= 2.0. One can install the package from GitHub (is recommended)

’pip install git+https://github.com/LuchnikovI/QGOpt

or from pypi (might be different in comparison with the current state of master)

’pip install QGOpt

QGOpt, Release 0.2a

4 Chapter 1. Installation

CHAPTER 2

Quick Start: Quantum Gate decomposition

One can open this tutorial in Google Colab (is recommended)

In the given short tutorial, we show the basic steps of working with QGOpt. It is known that an arbitrary two-qubit
unitary gate can be decomposed into a sequence of CNOT gates and one qubit gates as it is shown on the tensor
diagram below (if the diagram is not displayed here, please open the notebook in Google Colab).Irenorm\ layer.png|

Local unitary gates are elements of the complex Stiefel manifold; thus, the decomposition can be found by minimizing
Frobenius distance between a given two qubits unitary gate and its decomposition. In the beginning, let us import some
libraries.

First, one needs to import all necessary libraries.

import tensorflow as tf # tf 2.x
import matplotlib.pyplot as plt
import math

try:
import QGOpt as ggo

except ImportError:
!lpip install git+https://github.com/LuchnikovI/QGOpt
import QGOpt as ggo

Before considering the main part of the code that solves the problem of gate decomposition, we need to introduce a
function that calculates the Kronecker product of two matrices:

def kron (A, B):

nnn

Returns Kronecker product of two square matrices.
Args:

A: complex valued tf tensor of shape (diml, diml)
B: complex valued tf tensor of shape (dim2, dim2)

(continues on next page)

https://colab.research.google.com/github/LuchnikovI/QGOpt/blob/master/docs/source/quick_start.ipynb

QGOpt, Release 0.2a

(continued from previous page)

Returns:
complex valued tf tensor of shape (diml x dim2, diml x dim2),

kronecker product of two matrices
nmnn

diml = A.shape[-1]

dim2 = B.shape[-1]

AB = tf.transpose(tf.tensordot (A, B, axes=0), (0, 2, 1, 3))
return tf.reshape (AB, (diml » dim2, diml % dim2))

Then we define an example of the complex Stiefel manifold:

]: m = ggo.manifolds.StiefelManifold()

As a target gate that we want to decompose, we use a randomly generated one:
U = m.random((4, 4), dtype=tf.complexl128)

4,2

We initialize the initial set of local unitary gates {u;;};;_

1 Tandomly as a 4th rank tensor:

u = m.random((4, 2, 2, 2), dtype=tf.complexl128)

The first two indices of this tensor enumerate a particular one-qubit gate, the last two indices are matrix indices of a
gate. We turn this tensor into its real representation in order to make it suitable for an optimizer and wrap it into the
TF variable:

u = ggo.manifolds.complex_to_real (u)
tf.Variable (u)

c
Il

We initialize the CNOT gate as follows:

cnot = tf.constant([[1, O, 0, 0],
(o, 1, o, o1,
[o, o, o, 11,
[0, 0, 1, 0]], dtype=tf.complexl128)

As a next step we initialize Riemannian Adam optimizer:

lr = 0.2 # optimization step size

we also pass an example of manifold

to the optimizer in order to give information
about constraints to the optimizer

opt = ggo.optimizers.RAdam(m, lr)

Finally, we ran part of code that calculate forward pass, gradients, and optimization step several times until conver-
gence is reached:

this list will be filled by value of
error per iteration
err_vs_iter = []

optimization loop
for _ in range(500):
with tf.GradientTape () as tape:
turning u back into its complex representation
uc = gqgo.manifolds.real_to_complex (u)

(continues on next page)

6 Chapter 2. Quick Start: Quantum Gate decomposition

[11]:

QGOpt, Release 0.2a

decomposition

D = kron(uc([0, 0], uc[O0, 11)

D = cnot @ D

D = kron(uc[l, 0], uc[l, 1])@ D
D = cnot @ D

D = kron(uc[2, 0], uc[2, 1]1)@ D
D = cnot @ D

D = kron(uc[3, 0], uc[3, 1]) @ D
loss function

L = tf.linalg.norm(D - U) xx 2

L tf.math.real (L)
filling list with history of error
err_vs_iter.append(tf.math.sqgrt (L))
gradient from tape
grad = tape.gradient (L, u)
optimization step
opt.apply_gradients (zip([grad], [ul))

Finally, we plot how error decreases with time

print ('[0, 0] element of the trained gate {}'.format (D[O,

print ('[0, 0] element of the true gate {}'.format (U[O,

plt

plt.
plt.
plt.

Lo,
Lo,

.plot (err_vs_iter)
yscale('log"')
xlabel ('iter')
ylabel ('err')

(continued from previous page)

0] .numpy ()))
0] .numpy ()))

0] element of the trained gate (-0.034378823704696526-0.468225852860967857)
0] element of the true gate (-0.03437882370484857-0.46822585286140827)

Text (0, 0.5, 'err'")

e

ll}':l 4

1072 1

107* 4

1077 4

107¢

10- 14 J

] 100 200 300
iter

400

500

QGOpt, Release 0.2a

8 Chapter 2. Quick Start: Quantum Gate decomposition

CHAPTER 3

API

3.1 Manifolds
3.2 Optimizers

3.3 Auxiliary functions

QGOpt, Release 0.2a

10 Chapter 3. API

CHAPTER 4

Frequently asked questions

4.1 Is there a relation between complex matrix manifolds and real
matrix manifolds?

E F

One can represent any complex matrix D = F + iF as a real matrix D = (rE

). Then, matrix operations on

matrices without and with tilde are related as follows:
A+ B+ A+ B, AB+— AB, At +— AT\
Therefore, any complex manifold has a corresponding real one. For more details read

Sato, H., & Iwai, T. (2013). A Riemannian optimization approach to the matrix singular value decomposition. SIAM
Journal on Optimization, 23(1), 188-212.

4.2 How to perform optimization over complex tensors and matrices?

To perform optimization over complex matrices and tensors, one needs to follow several simple rules. First of all, a
value of a loss function, you want to optimize, must be real. Secondly, the class for TensorFlow optimizers works well
only with real valued variables. Due to the class for Riemannian optimizers of QGOpt is inherited from the class for
TensorFlow optimizers, one requires all input variables to be real. Normally a point from a manifold is represented
by a complex matrix or tensor, but one can also consider a point as a real tensor. In general, we suggest the following
scheme for variables initialization and optimization:

Here we initialize an example of the complex Stiefel manifold.
= ggo.manifolds.StiefelManifold()

Here we initialize a unitary matrix by using an example of the
complex Stiefel manifold (dtype = tf.complex64).

= m.random((4, 4))

Here we turn a complex matrix to its real representation
(shape= (4, 4) —--> shape=(4, 4, 2)).

The last index enumerates real and imaginary parts.

oW WO W WS w

(continues on next page)

11

QGOpt, Release 0.2a

(continued from previous page)

(dtype=tf.complex64 —--> dtype=tf.float32).

u = ggo.manifolds.complex_to_real (u)

Here we turn u to tf.Variable, any Riemannian optimizer
can perform optimization over u now, because it 1is

real valued TensorFlow variable. Note also, that

any Riemannian optimizer preserves all the constraints
of a corresponding complex manifold.
u = tf.Variable (u)

After initialization of variables one can perform optimization step:

lr = 0.01 # optimization step size
opt = ggo.optimizers.RAdam(m, lr) # optimizer initialization

Here we calculate the gradient and perform optimization step.
Note, that in the body of a TensorFlow graph one can

have complex-valued tensors. It is only important to

have input variables and target function to be real.

tf.with tf.GradientTape () as tape:

Here we turn the real representation of a point on a manifold
back to the complex representation.

(shape=(4, 4, 2) —--> shape=(4, 4)),

(dtype=tf.float32 --> dtype=tf.complex64)

uc = ggo.manifolds.real_to_complex (u)

Here we calculate the value of a target function, we want to minimize.
Target function returns real value. If a target function returns an

imaginary value, then optimizer minimizes real part of a function.
loss = target_function (uc)

Here we calculate the gradient of a function.
grad = tape.gradient (loss, u)

And perform an optimization step.
opt.apply_gradients(zip([grad]l, [ul))

12 Chapter 4. Frequently asked questions

CHAPTER B

Entanglement renormalization

One can open this notebook in Google Colab (is recommended)

In the given tutorial, we show how the Riemannian optimization on the complex Stiefel manifold can be used to
perform entanglement renormalization and find the ground state energy and the ground state itself of a many-body
spin system at the point of quantum phase transition. First of all, let us import the necessary libraries.

import numpy as np
from scipy import integrate
import tensorflow as tf # tf 2.x

try:
import QGOpt as ggo

except ImportError:
'pip install git+https://github.com/LuchnikovI/QGOpt
import QGOpt as ggo

TensorNetwork library
try:
import tensornetwork as tn
except ImportError:
'pip install tensornetwork
import tensornetwork as tn

import matplotlib.pyplot as plt
from tgdm import tgdm
tn.set_default_backend ("tensorflow")

Fix random seed to make results reproducable.
tf.random.set_seed(42)

13

https://colab.research.google.com/github/LuchnikovI/QGOpt/blob/master/docs/source/entanglement_renormalization.ipynb

QGOpt, Release 0.2a

5.1 1. Renormalization layer

First of all, one needs to define a renormalization (mera) layer. We use ncon API from TensorNetwork library for these
purposes. The function mera_layer takes unitary and isometric tensors (building blocks) and performs renormalization
of a local Hamiltonian as it is shown on the tensor diagram below (if the diagram is not displayed here, please open the
notebook in Google Colab). Irenorm_layer.pngl For more information about entanglement renormalization please
see

Evenbly, G., & Vidal, G. (2009). Algorithms for entanglement renormalization. Physical Review B, 79(14), 144108.

Evenbly, G., & Vidal, G. (2014). Algorithms for entanglement renormalization: boundaries, impurities and interfaces.
Journal of Statistical Physics, 157(4-5), 931-978.

For more information about ncon notation see for example

Pfeifer, R. N., Evenbly, G., Singh, S., & Vidal, G. (2014). NCON: A tensor network contractor for MATLAB. arXiv
preprint arXiv:1402.0939.

@tf.function

def mera_layer (H,
UI
U_conj,
Z_left,
Z_right,
Z_left_conj,
Z_right_conj) :

nnn

Renormalizes local Hamiltonian.

Args:

H: complex valued tensor of shape (chi, chi, chi, chi),
input two-side Hamiltonian (a local term).

U: complex valued tensor of shape (chi %% 2, chi %% 2), disentangler

U_conj: complex valued tensor of shape (chi *x 2, chi x% 2),
conjugated disentangler.

Z_left: complex valued tensor of shape (chi *x 3, new_chi),
left isometry.

Z_right: complex valued tensor of shape (chi xx 3, new_chi),
right isometry.

Z_left_conj: complex valued tensor of shape (chi *x 3, new_chi),
left conjugated isometry.

Z_right_conj: complex valued tensor of shape (chi **x 3, new_chi),
right conjugated isometry.

Returns:
complex valued tensor of shape (new_chi, new_chi, new_chi, new_chi),
renormalized two side hamiltonian.

Notes:
chi is the dimension of an index. chi increases with the depth of mera,
—however,
at some point, chi is cut to prevent exponential growth of indices
dimensionality."""

index dimension before renormalization
chi = tf.cast(tf.math.sqgrt (tf.cast (tf.shape(U)[0], dtype=tf.float64d)),
dtype=tf.int32)

(continues on next page)

14 Chapter 5. Entanglement renormalization

QGOpt, Release 0.2a

(continued from previous page)

index dimension after renormalization

chi_new = tf.shape (Z_left) [-1]

List of building blocks

list_of_tensors = [tf.reshape
tf.reshape
tf.reshape
tf.reshape
tf.reshape
tf.reshape
H]

Zz_left, (chi, chi, chi, chi_new)),
Z_right, (chi, chi, chi, chi_new)),
Z_left_conj, (chi, chi, chi, chi_new)),
Z_right_conj, (chi, chi, chi, chi_new)),
U, (chi, chi, chi, chi)),

U_conj, (chi, chi, chi, chi)),

structures (ncon notation) of three terms of ascending super operator

net_struc_1 = [[1, 2, 3, -3, [9, 11, 12, -41, [1, 6, 7, -1],
Ao, 11, 12, =21, 3, 9, 4, 81, [7, 10, 5, 8, [6, 5, 2, 4]]
net_struc_2 = [[1, 2, 3, -31, [9, 11, 12, -41, [1, 2, 6, -1]1,
e, ii, iz, =21, (3, 9, &, 71, (6, 10, 5, B8], (B, B, &, 7]]
net_strue_3 = (1, 2, 3, =31, [9, 10, 12, =4], [1, 2, 5, =1]
5

’
ts, 11, 1z, -21, (3, 9, 4, 6], I[5, 8, 4, 7], [7, 11, 6, 10]]
sub-optimal contraction orders for three terms of ascending super operator
con_ord_1 = [4, 5, 8, 6, 7, 1, 2, 3, 11, 12, 9, 10]
con_ord_2 = (4, 7, 5, 8, 1, 2, 11, 12, 3, 6, 9, 10]
con_ord_3 (6, 7, 4, 11, 8, 12, 10, 9, 1, 2, 3, 5]

ncon

term_1 = tn.ncon(list_of_tensors, net_struc_1l, con_ord_1)
term_2 = tn.ncon(list_of_tensors, net_struc_2, con_ord_2)
term_3 = tn.ncon(list_of_tensors, net_struc_3, con_ord_3)

return (term_1 + term 2 + term_3) / 3 # renormalized hamiltonian

auxiliary functions that return initial isometries and disentanglers

@tf.

def

@tf.
def

function
z_gen(chi, new_chi):
"""Returns random isometry.

Args:
chi: int number, input chi.
new_chi: int number, output chi.

Returns:
complex valued tensor of shape (chi xx 3, new_chi)."""

one can use the complex Stiefel manfiold to generate a random isometry
m = ggo.manifolds.StiefelManifold ()
return m.random((chi %% 3, new_chi), dtype=tf.complexl28)

function
u_gen (chi) :
"""Returns the identity matrix of a given size (initial disentangler).

Args:
chi: int number.

Returns:
(continues on next page)

5.1.

1. Renormalization layer 15

()}

QGOpt, Release 0.2a

(continued from previous page)

complex valued tensor of shape (chi xx 2, chi xx 2)."""

return tf.eye(chi *x 2, dtype=tf.complexl128)

5.2 2. Transverse-field Ising (TFI) model hamiltonian and MERA
building blocks

Here we define the Transverse-field Ising model Hamiltonian and building blocks (disentanglers and isometries) of
MERA network that will be optimized.

First of all we initialize hyper parameters of MERA and TFI hamiltonian.

: max_chi = 4 # max bond dim
num_of_layers = 5 # number of MERA layers (corresponds to 2x3"5 = 486 spins)
h.x = 1 # value of transverse field in TFI model (h_x=1 is the critical field)

One needs to define Pauli matrices. Here all Pauli matrices are represented as one tensor of size 3 x 2 X 2, where the
first index enumerates a particular Pauli matrix, and the remaining two indices are matrix indices.

sigma = tf.constant ([[[1j*0, 1 + 1j%x0], [1 + 1jx0, 0x13]11,
[[0x13, =131, [13, 01311,
[[1 + 013, O0x13], [0%x13j, -1 + 0x13]1]1], dtype=tf.complexl128)

Here we define local term of the TFI hamiltonian.

zz_term = tf.einsum('ij,kl->ikjl', sigma[2], sigma[2])
x_term = tf.einsum('ij,kl->ikjl', sigma[0], tf.eye (2, dtype=tf.complexl28))
h = -zz_term - h_x * x_term

Here we define initial disentanglers, isometries, and state in the renormalized space.

disentangler U and isometry Z in the first MERA layer
U = u_gen(2)
Z = z_gen (2, max_chi)

lists with disentanglers and isometries in the rest of the layers
U_list = [u_gen(max_chi) for _ in range (num_of_layers - 1)]
Z_list = [z_gen(max_chi, max_chi) for _ in range (num_of_layers - 1)]

lists with all disentanglers and isometries
U_list = [U] + U_1list
7z list = [Z2] + Z_1list

initial state in the renormalized space (low dimensional in comparison
with the dimensionality of the initial problem)

psi = tf.ones((max_chi %% 2, 1), dtype=tf.complexl128)

psi = psi / tf.linalg.norm(psi)

converting disentanglers, isometries, and initial state to real
representation (necessary for the further optimizer)

U_list = list (map(ggo.manifolds.complex_to_real, U_list))

Z_list = list (map(ggo.manifolds.complex_to_real, Z_1list))

psi = ggo.manifolds.complex_to_real (psi)

(continues on next page)

16 Chapter 5. Entanglement renormalization

QGOpt, Release 0.2a

(continued from previous page)

wrapping disentanglers, isometries, and initial state into
tf.Variable (necessary for the further optimizer)

U_var = list(map(tf.Variable, U_list))

Z_var = list (map(tf.Variable, Z_1list))

psi_var = tf.Variable (psi)

5.3 3. Optimization of MERA

MERA parametrizes quantum state U (U, Z,) of a spin system, where U is a set of disentanglers, Z is a set of
isometries, and %) is a state in the renormalized space. In order to find the ground state and its energy, we perform
optimization of variational energy

Y(U, Z,v)|Hrr |V (U, Z — min

(U, 2,)| Hred| W (U, Z,9)) U, Z, 1eStiefel manifold
First of all, we define the parameters of optimization. In order to achieve better convergence, we decrease the learning
rate with the number of iteration according to the exponential law.

iters = 3000 # number of iterations
lr_i = 0.6 # initial learning rate
lr £ = 0.05 # final learning rate

learning rate is multiplied by this coefficient each iteration
decay = (lr_f / 1lr_1i) % (1 / iters)

Here we define an example of the complex Stiefel manifold necessary for Riemannian optimization and Riemannian
Adam optimizer.

:m = ggo.manifolds.StiefelManifold() # complex Stiefel manifold

opt = ggo.optimizers.RAdam(m, lr_i) # Riemannian Adam

Finally, we perform an optimization loop.

this list will be filled by the value of variational energy per iteration
E_list = []

optimization loop
for j in tgdm(range(iters)):

gradient calculation
with tf.GradientTape () as tape:

convert real valued variables back to complex valued tensors

U_var_c = list (map(ggo.manifolds.real_to_complex, U_var))
Z_var_c = list (map(ggo.manifolds.real_to_complex, Z_var))
psi_var_c = ggo.manifolds.real_to_complex (psi_var)

initial local Hamiltonian term
h_renorm = h

renormalization of a local Hamiltonian term
for i in range(len(U_var)) :
h_renorm = mera_layer (h_renorm,

(continues on next page)

5.3. 3. Optimization of MERA 17

[107]:

QGOpt, Release 0.2a

(continued from previous page)

U_var_cl[i],
tf.math.conj(U_var_cl[il]),
Z_var_cl[il],
Zz_var_cli],
tf.math.conj(Z_var_cl[il]),
tf.math.conj(Z_var_cl[i]))

renormalizad Hamiltonian (low dimensional)
h_renorm = (h_renorm + tf.transpose (h_renorm, (1, 0, 3, 2))) / 2
h_renorm = tf.reshape (h_renorm, (max_chi » max_chi, max_chi » max_chi))

energy
E = tf.cast((tf.linalg.adjoint (psi_var_c) @ h_renorm @ psi_var_c),
dtype=tf.float64) [0, 0]

adding current variational energy to the list
E_list.append (E)

gradients
grad = tape.gradient (E, U_var + Z_var + [psi_var])

optimization step
opt.apply_gradients(zip(grad, U_var + Z_var + [psi_var]))

learning rate update
opt._set_hyper ("learning_rate", opt._get_hyper ("learning_rate") x decay)

100%|| 3000/3000 [06:21<00:00, 7.87it/s]

Here we compare exact ground state energy with MERA based value. We also plot how the difference between exact
ground state energy and MERA-based energy evolves with the number of iteration.

exact value of ground state energy in the critical point
N = 2 x (3 %% num_of_layers) # number of spins (for 5 layers one has 486 spins)
EO_exact_fin = -2 x (1 / np.sin(np.pi / (2 * N))) / N # exact energy per spin

plt.yscale('log')

plt.xlabel ('iter")

plt.ylabel ('err'")

plt.plot (E_list - tf.convert_to_tensor (([EO_exact_fin] * len(E_list))), 'b')
print ("MERA energy:", E_list[-1].numpy())

print ("Exact energy:", EO_exact_fin)

MERA energy: -1.2731094185716914
Exact energy: -1.2732417615356748

18 Chapter 5. Entanglement renormalization

QGOpt, Release 0.2a

107
10771 5
5 1o]
1073 5
10
0 500 1000 1500 2000 2500 3000
iter

5.3. 3. Optimization of MERA 19

QGOpt, Release 0.2a

20 Chapter 5. Entanglement renormalization

CHAPTER O

Quantum channel tomography

One can open this notebook in Google Colab (is recommended)

In this tutorial, we perform quantum channel tomography via Riemannian optimization. First two blocks of code
(1. Many-qubit, informationally complete, positive operator-valued measure (IC POVM) and 2. Data set generation
(measurement outcomes simulation)) are refered to data generation, third bock dedicated to tomography of a channel.

First, one needs to import all necessary libraries.

: import tensorflow as tf # tf 2.x

import matplotlib.pyplot as plt
from math import sqgrt

try:
import QGOpt as ggo

except ImportError:
'pip install git+https://github.com/LuchnikovI/QGOpt
import QGOpt as ggo

6.1 1. Many-qubit, informationally complete, positive operator-valued
measure (IC POVM)

Before generating measurement outcomes and performing quantum tomography, one needs to introduce POVM de-
scribing quantum measurements. For simplicity, we use one-qubit tetrahedral POVM and generalize it on a many-
qubit case by taking tensor product between POVM elements, i.e. {M,}%_; is the one-qubit tetrahedral POVM,
{My, ® - @ My }§1:17“_,QN:1 is the many-qubits tetrahedral POVM.

: # Auxiliary function that returns Kronecker product between two

POVM elements A and B
def kron (A, B):
"""Kronecker product of two POVM elements.

(continues on next page)

21

https://colab.research.google.com/github/LuchnikovI/QGOpt/blob/master/docs/build/doctrees/nbsphinx/channel_tomography.ipynb

QGOpt, Release 0.2a

(continued from previous page)

Args:
A: complex valued tensor of shape (g, n, k).
B: complex valued tensor of shape (p, m, 1).
Returns:
complex valued tensor of shape (g » p, n » m, k = 1)"""
AB = tf.tensordot (A, B, axes=0)
AB = tf.transpose(AB, (0, 3, 1, 4, 2, 5))
shape = AB.shape
AB = tf.reshape (AB, (shape[0] x shapelll],
shape[2] % shape[3],
shape[4] = shape[5]))
return AB
Pauli matrices
sigma_x = tf.constant ([[0, 1], [1, 0]], dtype=tf.complexl128)
sigma_y = tf.constant ([[0 + 03, -131, [13, O + 03j]], dtype=tf.complexl28)
sigma_z = tf.constant ([[1, 0], [0, —-1]], dtype=tf.complexl28)
All Pauli matrices in one tensor of shape (3, 2, 2)

tf.concat ([sigma_x[tf.newaxis],
sigma_y[tf.newaxis]
sigma_z[tf.newaxis]

sigma
’
], axis=0)

Coordinates of thetrahedron peaks (is needed to build tetrahedral POVM)

sO = tf.constant ([0, 0, 1], dtype=tf.complex128)
sl = tf.constant ([2 » sqgrt(2) / 3, 0, -1/3], dtype=tf.complex128)
s2 = tf.constant ([-sqrt(2) / 3, sqgrt(2 / 3), -1 / 3], dtype=tf.complexl128)
s3 = tf.constant ([-sqrt(2) / 3, -sqgrt(2 / 3), -1 / 3], dtype=tf.complex128)
Coordinates of thetrahedron peaks in one tensor of shape (4, 3)
s = tf.concat ([sO[tf.newaxis],
sl[tf.newaxis],
s2[tf.newaxis],
s3[tf.newaxis]], axis=0)
One qubit thetrahedral POVM
M = 0.25 * (tf.eye(2, dtype=tf.complexl128) + tf.tensordot (s, sigma, axes=1l))
n = 2 # number of qubits we experiment with
M for many qubits
Mmg = M
for _ in range(n - 1):
Mmg = kron (Mmg, M)

6.2 2. Data set generation (measurement outcomes simulation).

Here we generate a set of measurement outcomes (training set). First of all, we generate a random quantum channel
with Kraus rank & by using the quotient manifold of Choi matrices. This quantum channel will be a target unknown
one, that we want to reconstruct. Then we generate a set of random pure density matrices, pass them through the
generated channel, and simulate measurements of output states. Results of measurements and initial states we write in

22 Chapter 6. Quantum channel tomography

QGOpt, Release 0.2a

a data set.

Parameters==
num_of_meas = 600000 # number of measurements

k = 2 # Kraus rank (number of Kraus operators)
#

example of quotient manifold of Choi matrices
m = ggo.manifolds.ChoiMatrix ()

random parametrization of Choi matrix of kraus rank k
A = m.random((2 x*x (2 % n), k), dtype=tf.complex128)

ETS

corresponding Choi matrix
= A Q@ tf.linalg.adjoint (A)

Q

corresponding quantum channel

C_resh = tf.reshape(C, (2 ** n, 2 *%* n, 2 %% n, 2 %% n))
Phi = tf.transpose(C_resh, (1, 3, 0, 2))

Phi = tf.reshape (Phi, (2 %% (2 x n), 2 xx (2 % n)))

random initial pure density matrices

psi_set = tf.random.normal ((num_of_meas, 2 xx n, 2), dtype=tf.floaté64)
psi_set = ggo.manifolds.real_to_complex (psi_set)

psi_set = psi_set / tf.linalg.norm(psi_set, axis=-1, keepdims=True)
rho_in = psi_set[..., tf.newaxis] x tf.math.conj(psi_set[:, tf.newaxis])

reshaping density matrices to vectors
rho_in_resh = tf.reshape(rho_in, (-1, 2 ** (2 %= n)))

output states (we pass initial density matrices trough a channel)
rho_out_resh = tf.tensordot (rho_in_resh, Phi, axes=[[1], [111)

reshaping output density matrices back to matrix form

rho_out = tf.reshape(rho_out_resh, (-1, 2 xx n, 2 %% n))

Measurements simulation (by using Gumbel trick for sampling from a
discrete distribution)

P = tf.cast(tf.einsum('gjk,pkj->pgq', Mmg, rho_out), dtype=tf.float64)
eps = tf.random.uniform((num_of_meas, 2 %% (2 = n)), dtype=tf.float64)
eps = —-tf.math.log(-tf.math.log(eps))

ind_set = tf.math.argmax(eps + tf.math.log(P), axis=-1)

projectors that came true
M_set = tf.gather_nd(Mmg, ind_set[:, tf.newaxis])

resulting dataset
data_set = [rho_in, M_set]

6.3 3. Data processing (tomography)

First, we define an example of the Choi matrices manifold:

m = ggo.manifolds.ChoiMatrix ()

The manifold of Choi matrices is represneted through the quadratic parametrization C' = AA' with qn equivalence

6.3. 3. Data processing (tomography)

23

QGOpt, Release 0.2a

relation A ~ AQ), where () is an arbitrary unitary matrix. Thus, we initialize a variable, that represents the parametriza-

tion of a Choi matrix:

random initial paramterization

= m.random((2 ** (2 * n), 2 %+ (2 * n)), dtype=tf.complexl128)
in order to make an optimizer works properly

one need to turn a to real representation

= ggo.manifolds.complex_to_real (a)

variable

= tf.Variable (a)

T TS

Then we initialize Riemannian Adam optimizer:

lr = 0.07 # optimization step size
opt = ggo.optimizers.RAdam(m, 1lr)

Finally, we ran part of code that calculate forward pass, gradients, and optimization step several times until conver-

gence is reached:

the list will be filled by value of J distance per iteration
j_distance = []

for _ in range (400) :
with tf.GradientTape () as tape:
complex representation of parametrization
shape=(2x*2n, 2x*2n)
ac = gqgo.manifolds.real_to_complex(a)

reshape parametrization
(2xx2n, 2%*2n) ——> (2%%n, 2**xn, 2%%2n)
ac = tf.reshape(ac, (2%*n, 2x*n, 2%x(2*n)))

Choi tensor (reshaped Choi matrix)
c = tf.tensordot (ac, tf.math.conj(ac), [[2], [2]1])

turning Choi tensor to the

corresponding quantum channel

phi = tf.transpose(c, (1, 3, 0, 2))

phi = tf.reshape(phi, (2%*(2xn), 2%%(2%n)))

reshape initial density
matrices to vectors

rho_resh = tf.reshape(data_set[0], (num_of_meas, 2% (2xn)))

passing density matrices

through a quantum channel

rho_out = tf.tensordot (phi,
rho_resh,

[r11, 111
rho_out = tf.transpose(rho_out)
rho_out = tf.reshape(rho_out, (num_of_meas, 2xxn, 2%x*n))

probabilities of measurement outcomes

(povms 1s a set of POVM elements

came true of shape (N, 2%xn, 2%%n))

p = tf.linalg.trace(data_set[1l] @ rho_out)

negative log likelihood (to be minimized)

(continues on next page)

24 Chapter 6. Quantum channel tomography

[14]:

QGOpt, Release 0.2a

(continued from previous page)

L = —tf.reduce_mean(tf.math.log(p))

filling j_distance list (for further plotting)

j_distance.append (tf.reduce_sum(tf.abs(tf.linalg.eigvalsh (tf.reshape(c,
(2 %% (2 » n), 2 xx (2 *n))) - C))) / (2 (2 »x n)))

gradient

grad = tape.gradient (L, a)

optimization step

opt.apply_gradients (zip ([gradl, [a]))

Finally, we plot the dependance between .J distance and iteration.

: plt.plot (j_distance, 'b')

plt.legend([r'$n=$' + str(n) + r'$\ qubits$'])

plt.yscale('log')

plt.ylabel (r'$\frac{l}{2d}||C_{\rm true} - C_{\rm recon}||_{\rm tr}$")
(

plt.xlabel (r'S$iters’)

Text (0.5, 0, 'Siter$'")

ll]':l .
— =2 qubits

5
[
L=

| ll}_l -
8
g
=17

0 50 100 150 200 250 300 350 400
iter

6.3. 3. Data processing (tomography)

25

QGOpt, Release 0.2a

26 Chapter 6. Quantum channel tomography

CHAPTER /

Quantum state tomography

One can open this notebook in Google Colab (is recommended)

In this tutorial, we perform quantum state tomography via Riemannian optimization. First two blocks of a code
(1. Many-qubit, informationally complete, positive operator-valued measure (IC POVM) and 2. Data set generation
(measurement outcomes simulation)) are refered to data generation, third bock dedicated to tomography of a state.

First, one needs to import all necessary libraries.

: import tensorflow as tf # tf 2.x

from math import sqgrt

try:
import QGOpt as ggo

except ImportError:
!lpip install git+https://github.com/LuchnikovI/QGOpt
import QGOpt as ggo

import matplotlib.pyplot as plt
from tgdm import tgdm

Fix random seed to make results reproducable.
tf.random.set_seed(42)

7.1 1. Many-qubit, informationally complete, positive operator-valued
measure (IC POVM)

Before generating measurement outcomes and performing quantum tomography, one needs to introduce POVM de-
scribing quantum measurements. For simplicity, we use one-qubit tetrahedral POVM and generalize it on a many-
qubit case by taking tensor product between POVM elements, i.e. {M,}*_, is the one-qubit tetrahedral POVM,
{My, @+ ® Moy }a —1. oy is the many-qubits tetrahedral POVM.

.....

27

https://colab.research.google.com/github/LuchnikovI/QGOpt/blob/master/docs/source/state_tomography.ipynb

QGOpt, Release 0.2a

Auxiliary function that returns Kronecker product between two
POVM elements A and B
def kron (A, B):

"""Kronecker product of two POVM elements.

Args:
A: complex valued tensor of shape (g, n, k).
B: complex valued tensor of shape (p, m, 1).
Returns:
complex valued tensor of shape (g » p, n *x m, k = 1)"""
AB = tf.tensordot (A, B, axes=0)
AB = tf.transpose(AB, (0, 3, 1, 4, 2, 5))
shape = AB.shape
AB = tf.reshape(AB, (shape[0] % shapelll],
shape[2] % shape[3],
shape[4] % shape[5]))
return AB
Pauli matrices
sigma_x = tf.constant ([[0, 1], [1, 0]], dtype=tf.complex128)
sigma_y = tf.constant ([[0 + 03, -13], [13j, O + 073]], dtype=tf.complexl128)
sigma_z = tf.constant ([[1, 0], [0, —-1]], dtype=tf.complexl28)

All Pauli matrices in one tensor of shape

tf.concat ([sigma_x[tf.newaxis],
sigma_y[tf.newaxis],
sigma_z[tf.newaxis]], axis=0)

(3, 2, 2)
sigma =

Coordinates of thetrahedron peaks (is needed to build tetrahedral POVM)

sO = tf.constant ([0, 0, 1], dtype=tf.complexl128)

(
sl = tf.constant ([2 » sqgrt(2) / 3, 0, -1/3], dtype=tf.complex128)
s2 = tf.constant ([-sqrt(2) / 3, sqgrt(2 / 3), -1 / 3], dtype=tf.complexl128)
s3 = tf.constant ([-sqrt(2) / 3, -sqgrt(2 / 3), -1 / 3], dtype=tf.complexl128)

Coordinates of thetrahedron peaks in one tensor of shape (4, 3)

tf.concat ([sO[tf.
sl[tf.
s2[tf.
s3[tf.

S =

newaxis],
newaxis],
newaxis],

newaxis]], axis=0)

One qubit thetrahedral POVM

=
Il

0.25 = (tf.eye(2,

n =2

M for n qubits

Mmg = M

for _ in range(n - 1)
Mmg =

dtype=tf.complex128) + tf.tensordot (s, sigma, axes=l))

number of qubits we experiment with

(Mmaq)

kron (Mmg, M)

28

Chapter 7. Quantum state tomography

QGOpt, Release 0.2a

7.2 2. Data set generation (measurement outcomes simulation).

Here we generate a set of measurement outcomes (training set). First of all, we generate a random density matrix
that is a target state we want to reconstruct. Then, we simulate measurement outcomes over the target state driven by
many-qubits tetrahedral POVM introduced in the previous cell.

=== ====== #
num_of_meas = 600000 # number of measurement outcomes
e D D #

random target density matrix (to be reconstructed)
= ggo.manifolds.DensityMatrix ()

A = m.random((2 xx n, 2 ** n), dtype=tf.complexl28)
rho_true = A @ tf.linalg.adjoint (A)

3
|

measurements simulation (by using Gumbel trick for sampling from a

discrete distribution)

P = tf.cast(tf.tensordot (Mmg, rho_true, [[1, 2], [1, 0]]), dtype=tf.float64)
eps = tf.random.uniform((num_of_meas, 2 xx (2 % n)), dtype=tf.float64)

eps = —-tf.math.log(-tf.math.log(eps))

ind_set = tf.math.argmax(eps + tf.math.log(P), axis=-1)

POVM elements came true (data set)
data_set = tf.gather_nd(Mmg, ind_set[:, tf.newaxis])

7.3 3. Data processing (tomography)

First, we define an example of the density matrices manifold:

:m = ggo.manifolds.DensityMatrix()

The manifold of density matrices is represneted through the quadratic parametrization o = AA! with an equiva-
lence relation A ~ AQ), where () is an arbitrary unitary matrix. Thus, we initialize a variable, that represents the
parametrization of a density matrix:

random initial paramterization

= m.random((2 ** n, 2 %% n), dtype=tf.complexl28)
in order to make an optimizer works properly

one need to turn a to real representation

= ggo.manifolds.complex_to_real (a)

variable

= tf.Variable (a)

O H O o O

Then we initialize Riemannian Adam optimizer:

lr = 0.07 # optimization step size
opt = ggo.optimizers.RAdam(m, 1lr)

Finally, we ran part of code that calculate forward pass, gradients, and optimization step several times until conver-
gence is reached:

the list will be filled by value of trace distance per iteration
trace_distance = []

(continues on next page)

7.2. 2. Data set generation (measurement outcomes simulation). 29

QGOpt, Release 0.2a

(continued from previous page)

for _ in range (400):
with tf.GradientTape () as tape:
complex representation of parametrization
shape=(2x*n, 2x%*n)
ac = gqgo.manifolds.real_to_complex(a)

density matrix
rho_trial = ac @ tf.linalg.adjoint (ac)

probabilities of measurement outcomes
p = tf.tensordot (rho_trial, data_set, [[0, 11, [2, 1]11])
P tf.math.real (p)

negative log likelihood (to be minimized)
L = —tf.reduce_mean(tf.math.log(p))

filling trace_distance list (for further plotting)

trace_distance.append(tf.reduce_sum(tf.math.abs(tf.linalg.eigvalsh(rho_trial -
—rho_true))))

gradient

grad = tape.gradient (L, a)

optimization step

opt.apply_gradients (zip([grad], [al))

Here we plot trace distance vs number of iteration to validate the result

plt.plot (trace_distance, 'b')

plt.legend([r'$n=$"' + str(n) + r'S$\ qubits$'])

plt.yscale('log')

plt.ylabel (r'$| |\varrho_{\rm true} - \varrho_{\rm trial}||_{\rm tr}$")
plt.xlabel (r'S$iter$"')

Text (0.5,0, '$Siter$")

107 — n=2 qubits

1'}—1 4

[|@ue = Desa][er

1'}—2 4

0 50 100 150 200 250 300 350 400
iter

30 Chapter 7. Quantum state tomography

CHAPTER 8

Optimal POVM

One can open this tutorial in Google Colab (is recommended)

In the following tutorial, we show how to perform optimization over the manifold of POVMs by using the QGOpt
library. It is known that measurements of a qubit induced by tetrahedral POVM allow reconstructing an unknown qubit
state with a minimal variance if there is no prior information about a qubit state. Let us check this fact numerically
using optimization over the manifold of POVMs. In the beginning, let us import some libraries.

import tensorflow as tf # tf 2.x
import matplotlib.pyplot as plt
import math

try:
import QGOpt as ggo

except ImportError:
!pip install git+https://github.com/LuchnikovI/QGOpt@Dev
import QGOpt as ggo

Fix random seed to make results reproducable.
tf.random.set_seed(42)

8.1 1. Prior information about a quantum state

We represent a prior probability distribution over a quantum state approximately, by using a set of samples from a
prior distribution. Since tetrahedral POVM is optimal when there is no prior information about a state, we consider
uniform distribution across the Bloch ball.

- #
num_of_samples = 10000 # number of samples representing prior information
- #

(continues on next page)

31

https://colab.research.google.com/github/LuchnikovI/QGOpt/blob/master/docs/source/optimal_povm.ipynb

QGOpt, Release 0.2a

(continued from previous page)

Pauli matrices

sigma_x = tf.constant ([[0, 1], [1, 0]], dtype=tf.complexl128)

sigma_y = tf.constant ([[0 + 03, -13]1, [13j, O + 0j]], dtype=tf.complexl28)
sigma_z = tf.constant ([[1, 0], [0, -1]1], dtype=tf.complexl28)

All Pauli matrices in one tensor of shape (3, 2, 2)

sigma = tf.concat ([sigma_x[tf.newaxis],
sigma_y[tf.newaxis],
sigma_z[tf.newaxis]], axis=0)

Set of points distributed uniformly across Bloch ball

X tf.random.normal ((num_of_samples, 3), dtype=tf.float64)
x = x / tf.linalg.norm(x, axis=-1, keepdims=True)

x = tf.cast(x, dtype=tf.complexl128)
u
u
u
X

tf.random.uniform((num_of_samples, 1), maxval=1l, dtype=tf.float64)
u *x (1 / 3)
tf.cast (u, dtype=tf.complex128)

= X *x U

Set of density matrices distributed uniformly across Bloch ball
(prior information)
rho = 0.5 « (tf.eye (2, dtype=tf.complexl128) + tf.tensordot (x, sigma, axes=1))

8.2 2. Search for the optimal POVM with given prior information about
a state

Here we search for the optimal POVM via minimizing the variance of a posterior distribution over density matrices.
First, we define an example of the POVMs manifold:

:m = ggo.manifolds.POVM ()

The manifolds of POVMs is represented through the quadratic parametrization M; = AiA;f with an equivalence rela-
tion A; ~ A;Q;, where Q; is an arbitrary unitary matrix. Here, we initialize a variable that represents the parametriza-
tion of each element of POVM:

randon initial parametrization of POVM

A = m.random((4, 2, 2), dtype=tf.complexl28)
real representtion of A

A = ggo.manifolds.complex_to_real (A)

tf.Variable to be tuned

A = tf.Variable (A)

Then we initialize Riemannian Adam optimizer:

lr = 0.03
opt = qggo.optimizers.RAdam(m, 1lr)

Finally, we ran the part of code that calculates forward pass, gradients, and optimization step several times until
convergence to the optimal point is reached:

for i in range (1000) :
with tf.GradientTape () as tape:

(continues on next page)

32 Chapter 8. Optimal POVM

QGOpt, Release 0.2a

(continued from previous page)

Complex representation of A

Ac = ggo.manifolds.real_to_complex (A)

POVM from its parametrization

povm = Ac @ tf.linalg.adjoint (Ac)

Inverce POVM (is needed to map a probability distribution to a density,

—matrix)

grad

povm_inv = tf.linalg.inv(tf.reshape (povm, (4, 4)))
Matrix T maps probability vector to four real parameters representing
a quantum state (equivalent to inverse POVM)
T = tf.concat ([tf.math.real (povm_inv [0, tf.newaxis]),
tf.math.real (povm_inv[3, tf.newaxis]),
tf.math.real (povm_inv[2, tf.newaxis]),
tf.math.imag (povm_inv[2, tf.newaxis])], axis=0)

POVM maps a quantum state to a probability vector
= tf.tensordot (rho, povm, axes=[[2], [1]11])

= tf.transpose(p, (0, 2, 1, 3))

= tf.math.real(tf.linalg.trace(p))

T T 'O #*

Covariance matrix of a reconstructed density matrix
cov = -p[:, tf.newaxis] * p[..., tf.newaxis]

cov = cov + tf.linalg.diag(p ** 2)

cov = cov + tf.linalg.diag(p » (1 - p))

cov = tf.tensordot (T, cov, [[1], [1]1)

cov = tf.tensordot (cov, T, [[2], [11])

cov = tf.transpose(cov, (1, 0, 2))

Covariance matrix avaraged over prior distribution
av_cov = tf.reduce_mean (cov, axis=0)

loss function (log volume of Covariance matrix)
loss = tf.reduce_sum(tf.math.log(tf.linalg.svd(av_cov) [0][:-1]))
= tape.gradient (loss, A) # gradient

opt.apply_gradients (zip ([grad]l, [A])) # minimization step

8.3 3. Verification

Here we check the resulting optimal POVM. For tetrahedral POVM one has the following relation Tr (M*M?) =

25045""1

12

One can see, that this relation is almost true for a resulting POVM. The small error appears due to the

approximate Monte-Carlo averaging of a covariance matric by using a set of samples from the prior distribution.

Cross =

Cross
Cross

Cross =

tf.tensordot (povm, povm, [[2], [1]11])
tf.transpose(cross, (0, 2, 1, 3))
tf.linalg.trace (cross)

tf.math.real (cross)

plt.matshow (cross)
print (cross)

tf.Tensor (

[[0.24927765 0.08337808 0.08333673 0.08328467]
[0.08337808 0.24939711 0.08328523 0.08333633]
[0.08333673 0.08328523 0.25029829 0.08337795]
[0.08328467 0.08333633 0.08337795 0.25102899]], shape=(4, 4), dtype=floaté64)

8.3. 3. Verification 33

QGOpt, Release 0.2a

34 Chapter 8. Optimal POVM

CHAPTER 9

How to Contribute

9.1 Code style

All contributions should be formated according to the PEPS standard. Slightly more than 80 characters can sometimes
be tolerated if increased line width increases readability. All docstrings should follow Google Style Python Docstrings.

9.2 Dependencies

Make sure that you use Python >= 3.5 and have TensorFlow >= 2.0 installed.

9.3 Unit tests

After any change of QGOpt, one has to check whether all the tests run without errors. Currently, tests check optimiza-
tion primitives (retractions, vector transports, etc.) for all manifolds and check optimizers’ performance on the simple
optimization problem on complex Stiefel manifold. For any new functionality, please provide suitable unit tests. Also,
if you find a bug, consider adding a test that detects the bug before fixing it.

’pytest

running all test files.

’pytest test_manifolds.py

running tests of all manifolds except complex Stiefel manifold.

’pytest test_stiefel.py

running tests of complex Stiefel manifold.

35

QGOpt, Release 0.2a

pytest test_optimizers.py

running tests of optimizers.

36 Chapter 9. How to Contribute

	Installation
	Quick Start: Quantum Gate decomposition
	API
	Frequently asked questions
	Entanglement renormalization
	Quantum channel tomography
	Quantum state tomography
	Optimal POVM
	How to Contribute

